
ai.uni-jena.de

Computing einsum expressions using LIBXSMM
Max Koch

Friedrich Schiller University Jena

INTRODUCTION TO EINSUM EXPRESSIONS

MEMORY LAYOUT FOR INTERMEDIATE TENSORS

RUNTIME PERFORMANCES

CONCLUSIONS

REFERENCES

CONTACT

Max Koch
max.koch.m@gmx.de

Alexander Heinecke et al. “LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation”. In: SC ’16: 
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2016, pp. 981–
991. doi: 10.1109/SC.2016.83. 
Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Proceedings of the 33rd 
International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019. 
Tensor Network. https://tensornetwork.org/. 

The calculation of offsets takes a large amount of time. The reason for that is the way
elements are being chosen to be part of different sub-matrices. Elements are fetched
by increasing indices a fixed number of times. This ensures a desired kernel shape but
complicates offset calculations. In the future, it is possible to research more memory
layouts for intermediate tensors that might perform better.

The runtimes of the approach with dedicated memory layouts for intermediate tensors
were compared to the ones of PyTorch’s einsum implementation. PyTorch analyzes
the einsum string every time the subroutine is called. In contrast, my implementation
allows for a preceding analysis with basic offset caching, which has to be computed
only once. The same einsum expression can be processed with different input data
without further analysis.

The Einstein summation convention (einsum) is a powerful notation to express
operations on tensors. In my research, I tried to find an approach to compute einsum
expressions in a way that reduces memory overhead. The following is an einsum
encoding a tensor network contraction:

Permuting an intermediate tensor after its calculation results in a memory overhead.
Multiple memory operations can be merged into one. By merging the matrix write-back
and the permutation, one essentially gains a free permutation of the tensor. It is now
possible to describe a memory layout for intermediate tensors that reduces the
execution time:

To compute an einsum, it is beneficial to contract input tensors in binary fashion until
one final tensor is left. It is further possible to compute binary einsum contractions
using general matrix multiplications (GEMMs), harnessing the performance of highly
optimized subroutines. The backbone for matrix multiplications of my tests was
LIBXSMM, a C++ library targeting small matrix multiplications. More traditional
contraction approaches must ensure that tensors have a specific memory layout in
order to be able to perform a GEMM. Normally, this memory layout is achieved by
permuting the tensors.

Furthermore, an unpacking routine that writes respective elements to their correct
position in memory can be built, so that the result elements in the registers are directly
written to corresponding addresses. No additional permutation is needed.

1. Calculate indices of output sub-matrix 2. Calculate offset inside the matrix

contraction 1 contraction 2 contraction 3

N

K

B

0 1 2 3

kernelk

kernelm0

1

2

3

iMatm
iMatk

Unpack element of kernel sub-matrix given indices for each dimension

3. Write element to memory of the output tensor (possibly suboptimal memory access patterns)

adc, cf, de, abe -> fb
Multiple sub-strings divided by commas reference 

different tensors. The characters are dimension identifiers 
for a single tensor. The ”->” divides the expression into 

input tensors (left) and the output tensor (right).

e200

e201

e202

e203

e204

e210

e211

e212

e213

e214

e220

e221

e222

e223

e224

e230

e231

e232

e233

e234

e100

e101

e102

e103

e104

e110

e111

e112

e113

e114

e120

e121

e122

e123

e124

e130

e131

e132

e133

e134

e000

e001

e002

e003

e004

e010

e011

e012

e013

e014

e020

e021

e022

e023

e024

e030

e031

e032

e033

e034
a

d

c

input tensors

intermediate tensors,
output tensor

GEMM

permutation

left tensor right tensor
K

M

B

The piecharts display a more detailed runtime analysis. Wedges show relative
runtimes of the time taken by the kernel, permuting the inputs (they are not
intermediate tensors, so they have to be permuted initially), and the unpacking
routine.

Einsums encoding basic linear algebra 
operations like (chain) matrix multiplications

General einsum expressions with multiple 
(5 – 20) input tensors

The right column is the 
current approach.

PRO: 
- no search for 

dimension order
- guaranteed kernel

shape

CON:
- complicated offset 

calculations

km, nk -> nm
(dimension sizes: 2048)

abcd, beft, cdjl, fhij, gikl -> aehk
(dimension sizes: left 2, right 8) 


