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The calculation of offsets takes a large amount of time. The reason for that is the way
elements are being chosen to be part of different sub-matrices. Elements are fetched
by increasing indices a fixed number of times. This ensures a desired kernel shape but
complicates offset calculations. In the future, it is possible to research more memory
layouts for intermediate tensors that might perform better.

The runtimes of the approach with dedicated memory layouts for intermediate tensors
were compared to the ones of PyTorch’s einsum implementation. PyTorch analyzes
the einsum string every time the subroutine is called. In contrast, my implementation
allows for a preceding analysis with basic offset caching, which has to be computed
only once. The same einsum expression can be processed with different input data
without further analysis.

The Einstein summation convention (einsum) is a powerful notation to express
operations on tensors. In my research, I tried to find an approach to compute einsum
expressions in a way that reduces memory overhead. The following is an einsum
encoding a tensor network contraction:

Permuting an intermediate tensor after its calculation results in a memory overhead.
Multiple memory operations can be merged into one. By merging the matrix write-back
and the permutation, one essentially gains a free permutation of the tensor. It is now
possible to describe a memory layout for intermediate tensors that reduces the
execution time:

To compute an einsum, it is beneficial to contract input tensors in binary fashion until
one final tensor is left. It is further possible to compute binary einsum contractions
using general matrix multiplications (GEMMs), harnessing the performance of highly
optimized subroutines. The backbone for matrix multiplications of my tests was
LIBXSMM, a C++ library targeting small matrix multiplications. More traditional
contraction approaches must ensure that tensors have a specific memory layout in
order to be able to perform a GEMM. Normally, this memory layout is achieved by
permuting the tensors.

Furthermore, an unpacking routine that writes respective elements to their correct
position in memory can be built, so that the result elements in the registers are directly
written to corresponding addresses. No additional permutation is needed.
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The piecharts display a more detailed runtime analysis. Wedges show relative
runtimes of the time taken by the kernel, permuting the inputs (they are not
intermediate tensors, so they have to be permuted initially), and the unpacking
routine.

Einsums encoding basic linear algebra 
operations like (chain) matrix multiplications

General einsum expressions with multiple 
(5 – 20) input tensors

The right column is the 
current approach.

PRO: 
- no search for 
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CON:
- complicated offset 

calculations

km, nk -> nm
(dimension sizes: 2048)

abcd, beft, cdjl, fhij, gikl -> aehk
(dimension sizes: left 2, right 8) 


