
ai.uni-jena.de

Automatic Symbolic Differentiation
for Tensor Expressions

Farin Lippmann

Motivation

Language Design

Differentiation

Results

Our algorithm allows for automatic symbolic differentiation of tensor expressions of
arbitrary order, so long as local differentiation rules have been defined for all of the
operations in the expression.

We are also able to automatically produce Numpy [3] code for the generated
derivative expressions.

This allowed us to verify the correctness of our implementation in dozens of test
cases, where our symbolically calculated derivative was compared to a numerical
approximation of the derivative of the expression at a random value.

It is also easy to prove that our algorithm produces an expression DAG whose
number of nodes and edges scales linearly with:
- the number of nodes and edges () in the original expression DAG

(with common subexpressions eliminated)
- the number of nodes () in the original unsimplified expression tree

Our algorithm computes derivatives of tensor expressions in reverse mode, by
repeatedly applying the chain rule.

We traverse the DAG from top to bottom. The goal is to calculate for each node
the derivative of the whole expression with respect to it, . This value is called
the pullback of .

When traversing the DAG, the pullback is known for each parent node of . This
allows us to apply the chain rule:

Thus, we need only know the local derivative of each node with respect to its
children to compute all pullbacks.

These local derivatives are obtained by applying differentiation rules for each of the
allowed types of nodes (sums, tensor products, powers, functions). The rules are
taken from Laue, Mitterreiter, and Giesen [2].

Because we eliminated common subexpressions, a node may have multiple parents.
As seen in the above equation for chain rule application, multiple contributions to
the same pullback need to be summed.

Here is an example of how our algorithm works:

AI relies on solving optimization problems.

An optimization problem is solved by finding values for parameters that
minimize/maximize some objective function.

Parameters are usually bundled in vectors, matrices, or higher-order tensors.

Thus, computing derivatives of tensor expressions is of interest.

For my bachelor’s thesis, I implemented a calculus for automatic symbolic
differentiation of tensor expressions.

We read tensor expressions made up of sums, tensor products (using einsum
notation [1]), power terms, elementwise function applications ()
and special function applications (), as well as constants (which are
treated as broadcast to the appropriate number of axes).

Here are some example expressions:

Linear Algebra Notation Our Notation

With the notation for tensor products defined, we can showcase some example
inputs into our differentiation program. Each input is made of three parts:
- the declaration of the tensor variables with the number of axes for each
- the expression
- the variable with respect to which the expression is to be differentiated

Parsing and Preprocessing

To differentiate expressions, we parse them into an internal representation that is
easier to work with, an expression DAG (directed acyclic graph).

declare
 v 1
expression
 v *(i,i->i) v
derivative wrt v

declare
 A 2
 x 1
expression
 (A + 1) *(ij,j->i) x
derivative wrt A

declare
 A 3
 x 0
expression
 A *(ijk,->ijk) exp(x)
derivative wrt x

Sources
[1] NumPy Developers. “numpy.einsum”. In: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html (2022)
[2] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. “A Simple and Efficient Tensor Calculus”. In: The Thirty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-20) (2020), pp. 4527–4534.
[3] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362.

We first parse a binary expression tree, then convert it into a DAG by eliminating
common subexpressions, such that no subexpression exists twice.

DAG for the expression

A binary tree representing the expression

is simplified by eliminating common
subexpressions

Given the DAG representing :

1. Differentiate the top node with respect to itself
(returns a delta tensor, analogous to identity matrix)

2. Apply product rule to differentiate top node with
respect to (left child), concatenate with chain rule

3. Apply product rule to differentiate top node with
respect to (right child), sum both
contributions to get full derivative
with respect to

1. 2. 3.

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html

