Al 2025

SUMMER SCHOOL

Retrieval-Augmented Generation (RAG)

Zhe Wang

Ludwig-Maximilians-Universitat Munchen

Motivation

RAG was developed to create a more robust and reliable system for knowledge-
intensive NLP tasks by integrating the strengths of both parametric (the pre-trained

model) and non-parametric (the retrievable knowledge base) memory. (Lewis et al.,
2020)

o Addressing Knowledge Gaps: The performance of large pre-trained language
models lags behind task-specific architectures on knowledge-intensive tasks. RAG
addresses this by combining a pre-trained retriever with a pre-trained sequence-to-
sequence model to provide external, up-to-date information.

o« Overcoming Static Knowledge: The world knowledge of pre-trained models is
fixed at the time of their training. RAG allows for updating the knowledge base by
simply replacing the document index, without needing to retrain the entire model.

o Providing Provenance: It is difficult to understand the reasoning behind the
decisions of large language models. RAG offers a degree of interpretability by
showing which retrieved documents were used to generate a response.

« Reducing Hallucinations: Large language models may generate text that is
factually incorrect, a phenomenon known as "hallucination”. By grounding the
generation process in retrieved documents, RAG can produce more factual and
specific language.

RAG Pipeline

Re.‘trigvml
ol “
Relotional DBs GraphDBs | VectorDBs Raowking ReFinement
Guestion —=] Guestion — Guestion —i@——)— {} — |
= @_} 5 @_? . Question |= —}'@ Relevance @"@
Text-to-5SQL Text-to-Cypher Self-query retriever ™ i:i
Naﬁral 'Langjl.iage to SQL Natural language to Cypher Auto-generate metadata —
and/or SQL w/ PGVecteor | query langugage for GraphDBs £ilt £ .
RS TROR AEEY Re-Rank, RankGPT, RAG-Fusion CRAG

Rank or filter / compress documents based on relevance

Quef‘!{ Tronslation

pe - T T AL A L L L L L Ll T T T s el --.\

—

Input question tromslation I
Guestion -a-@%m-phuq bresk-down, abstract, convert to hypcthetical docs :

|
' a—
| . gt
i . . ‘s i >
y Multi-query, RAG-Fusion, Decomposition, Step-back, HyDE \ % Re-retrieve and / or retrieve from new data sources
. b) if tri dd t T L t
I Translate the gquestion into a ferm that is better suited for retrieval | _ . B ’
“) w DB ------------------------- —

T - O O O S O O e e e

g—

|
Questien ﬁ"@-*- < > |= —> drsuer
o Doc
F!.g]a‘tn DR umerts
La&iqa.l routing Semarilic routing i
Promgt 1
5 Vel N 1
?
& & el
e vﬂ_ﬂtﬂrﬂtﬂrﬂ
S s Prompt #2
i
Let LLM choose DB based Embed gquestion and choose '
on the guestion prompt based on similarity : IHG‘. -n‘j &Eﬂﬁr‘ﬂ-’tiﬁﬂ
--- I.—-------_--_ S O Wy
’ Sy ~
| Chunk Optimization | Multi-representation indexing I Specialized Embeddings Hierarchical Indesxing } ! Active Retrieval |
" Charact Selt Stmmaries) : wreee. '
- C = | D@ |
V S Sections th ® =] Cluser g]i ¥ . ‘_}@4 !
b Spli.‘t i — [H.l, vee] \i] ! |
I = —= Sgmontic pr— = ==Y Cluser ¥ '
: = et = B ¥ :
' : : : ‘ ' Self-RAG, RRR :
; Semantic Splitter Parent Document, Dense X Fine-tuning, ColBERT RAPTOR 'y
i _ . . . e s . . ! § Use generation quality to inform !
Optimize chunk size Convert duc‘ments inte compact Dﬂlaln-spﬂcl‘FlE‘ and / or Tree uf document summarization | question re-writing and / or]
l\ used for embedding retrieval units (e.g., a summary) advanced embedding models at various abstraction levels 1IrI l‘. re—retrieval of documents 1III|r.I

Source: “RAG Decomposition”, an open source project provided by LangChain

Query Translation Methods

Ambiguous queries lead to poor document retrieval, causing LLMs to hallucinate
answers based on irrelevant information. Therefore, the goal for this step is to transfer
the user query to improve retrievals.

To address this issue Rackauckas (2024) proposed RAG-Fusion. The idea is to first
generate multiple queries from the user query using LLM, conduct parallel retrieval,
and then start reciprocal rank fusion (RRF) that is to select documents that
consistently appear in the top results across multiple queries.

IM72D128 IP
Rating _
LLM generates n qv *M generates n queries

4

Query 2 nEn Query n

CQuery 1

:
‘
!

Vectar Search
for m relevant
documents

Query 1 Query 2 Query n
documents documents documents
Rerank Rerank

: Rerank -
with rrf with rrf /ﬂth ref

Combined
Reranked
Documents

Send n queries
and reranked
documents to
the LLM
Th

e
IP Rating is IP57

for m relevant for m relevant

Vector Search Vector Search
documents documents

-

J/

Source: RAG-Fusion: A New Take on Retrieval-Augmented Generation. (Rackauckas,
Z.2024)

Alternatively, the query decomposition method was proposed by Google. It
decompose problem into sub-problems and solve them sequentially.

Stage 1: Decompose Question into Subquestions

N\ /A:T lve “How many tim \‘
Q: It takes Amy 4 minutes to climb to the top @ ~ o zhst:sl?de I:?eforeaitﬂ s
of a slide. It takes her 1 minute to slide down. h Language | closes?” we need to first
The water slide closes in 15 minutes. How 1 Model ' -
, : , solve: "How long does each
many times can she slide before it closes? - J : g
_ J \tnp take”)

Stage 2: Sequentially Solve Subquestions

/It takes Amy 4 minutes to climb to the top of a\ 4 A

A: It takes Amy 4 minutes to
slide. It takes her 1 minute to slide down. The Language | climb and 1 minute to slide

slide closes in 15 minutes. Model down. 4 + 1 = 5. So each trip
takes 5 minutes.

/ . J

Subquestion 1 ——\Q: How long does each trip take?

It takes Amy 4 minutes to climb to the top ON
a slide. It takes her 1 minute to slide down.

The slide closes in 15 minutes. A- The water slide closes in
4 model Q: How long does each trip take? L 15 minutes. Each trip takes 5
:‘Espjgr P88 | A: It takes Amy 4 minutes to climb and 1 ahrjggati:]e minutes. So Amy can slide
Subquestion1 | minute to slide down. 4 + 1 = 5. So each trip oels 15 + 5 = 3 times before it
takes 5 minutes. closes.

- /

Q: How many times can she slide before it

Qasas’? /

Source: Least-to-Most Prompting Enables Complex Reasoning in Large Language
Models. (Zhou et al., 2022)

Subquestion 2 —

Indexing Method

The goal for indexing is to transform external documents to retrievers which is
responsible for fetching the most relevant pieces of data given a user query. In simple
words, it uses embedding to transform both the user query and documents to vectors
and then use method like KNN to select the ones that are close to the query.

However, one issue occurs which is what if the number of required retrievals exceed
the number of K specified in the simple KNN model? Sarthi (2024) proposed the idea
of Recursive Abstractive Processing for Tree-Organized Retrieval (PATOR).

The tree is constructed by first clustering the raw documents (leaf layer) and generate
summaries for each cluster using LLM. This process is conducted recursively until a
certain pre-defined depth or a single cluster is reached.

RAPTOR Tree Formation of one tree layer Contents of a node

6 7 BQ‘\. Index #8
\

2. Summarization 1 f \ Child Nodes: 2, 3
by LLM

Root layer il |

Text: summary of

s nodes 2 and 3

7 8
s
1 2 || 3 4 s . \ - Text Embedding
Leaf layer 1. Clustering _ []

Text chunks

= b

There are two retrieval mechanisms: A. Tree traversal starts at the root level of the
tree and retrieves the top-k (here, top-1) node(s) based on cosine similarity to the
guery vector.

B. Collapsed tree collapses the tree into a single layer and retrieves nodes until a
threshold number of tokens is reached. The benefit of this is both the detailed
documents and high-level summaries are indexed together. This means if a higher-
level question is asked, it will retrieve more higher level of layers, and vice versa.

A. Tree Traversal Retrieval

—
=
Query e Q — — + Query E— Answer
Encoder — — — LLM
— — — —
U Retrieved Context
—
—

Tree Structure

B. Collapsed Tree Retrieval

o = e EEEEEEE O 000 + [| =

Collapsed Tree Structure Retrieved Context

Source: RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval.

References

 Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H.,

Lewis, M., Yih, W., Rocktaschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks.

 Rackauckas, Z. (2024). RAG-Fusion: A New Take on Retrieval-Augmented

Generation.

 Zhou, D., Scharli, N., Hou, L., Wel, J., Scales, N., Wang, X., Schuurmans, D., Cui,

C., Bousquet, O, Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables
Complex Reasoning in Large Language Models.

« LangChain. (2023, October 20). Semi-structured & multi-modal RAG. LangChain

Blog. https://blog.langchain.com/semi-structured-multi-modal-rag/

« Sarthi, P., Abdullah, S., Tuli, A., Khanna, S., Goldie, A., & Manning, C. D. (2024).

RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval.

https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/

	Slide 1

