
ai.uni-jena.de

AI 2025
SUMMER SCHOOL

Retrieval-Augmented Generation (RAG) 

Zhe Wang

Motivation

References

RAG was developed to create a more robust and reliable system for knowledge-

intensive NLP tasks by integrating the strengths of both parametric (the pre-trained 

model) and non-parametric (the retrievable knowledge base) memory. (Lewis et al., 

2020)

● Addressing Knowledge Gaps: The performance of large pre-trained language 

models lags behind task-specific architectures on knowledge-intensive tasks. RAG 

addresses this by combining a pre-trained retriever with a pre-trained sequence-to-

sequence model to provide external, up-to-date information.

● Overcoming Static Knowledge: The world knowledge of pre-trained models is 

fixed at the time of their training. RAG allows for updating the knowledge base by 

simply replacing the document index, without needing to retrain the entire model.

● Providing Provenance: It is difficult to understand the reasoning behind the 

decisions of large language models. RAG offers a degree of interpretability by 

showing which retrieved documents were used to generate a response.

● Reducing Hallucinations: Large language models may generate text that is 

factually incorrect, a phenomenon known as "hallucination". By grounding the 

generation process in retrieved documents, RAG can produce more factual and 

specific language.

RAG Pipeline

Ambiguous queries lead to poor document retrieval, causing LLMs to hallucinate 

answers based on irrelevant information. Therefore, the goal for this step is to transfer 

the user query to improve retrievals.

To address this issue Rackauckas (2024) proposed RAG-Fusion. The idea is to first 

generate multiple queries from the user query using LLM, conduct parallel retrieval, 

and then start reciprocal rank fusion (RRF) that is to select documents that 

consistently appear in the top results across multiple queries.

Query Translation Methods

Source: “RAG Decomposition”, an open source project provided by LangChain

• Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., 

Lewis, M., Yih, W., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks.

• Rackauckas, Z. (2024). RAG-Fusion: A New Take on Retrieval-Augmented 

Generation. 

• Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, 

C., Bousquet, O., Le, Q., & Chi, E. (2022). Least-to-Most Prompting Enables 

Complex Reasoning in Large Language Models.

• LangChain. (2023, October 20). Semi-structured & multi-modal RAG. LangChain

Blog. https://blog.langchain.com/semi-structured-multi-modal-rag/

• Sarthi, P., Abdullah, S., Tuli, A., Khanna, S., Goldie, A., & Manning, C. D. (2024). 

RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval. 

Source: RAG-Fusion: A New Take on Retrieval-Augmented Generation. (Rackauckas, 

Z. 2024)

Alternatively, the query decomposition method was proposed by Google. It 

decompose problem into sub-problems and solve them sequentially. 

Indexing Method

Source: Least-to-Most Prompting Enables Complex Reasoning in Large Language 

Models. (Zhou et al., 2022)

The goal for indexing is to transform external documents to retrievers which is 

responsible for fetching the most relevant pieces of data given a user query. In simple 

words, it uses embedding to transform both the user query and documents to vectors 

and then use method like KNN to select the ones that are close to the query.

However, one issue occurs which is what if the number of required retrievals exceed 

the number of K specified in the simple KNN model? Sarthi (2024) proposed the idea 

of Recursive Abstractive Processing for Tree-Organized Retrieval (PATOR). 

The tree is constructed by first clustering the raw documents (leaf layer) and generate 

summaries for each cluster using LLM. This process is conducted recursively until a 

certain pre-defined depth or a single cluster is reached. 

Source: RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval. 

Ludwig-Maximilians-Universität München

There are two retrieval mechanisms: A. Tree traversal starts at the root level of the 

tree and retrieves the top-k (here, top-1) node(s) based on cosine similarity to the 

query vector.

B. Collapsed tree collapses the tree into a single layer and retrieves nodes until a 

threshold number of tokens is reached. The benefit of this is both the detailed 

documents and high-level summaries are indexed together. This means if a higher-

level question is asked, it will retrieve more higher level of layers, and vice versa.

https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/
https://blog.langchain.com/semi-structured-multi-modal-rag/

	Slide 1

