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Motivation

RAG was developed to create a more robust and reliable system for knowledge-
intensive NLP tasks by integrating the strengths of both parametric (the pre-trained

model) and non-parametric (the retrievable knowledge base) memory. (Lewis et al.,
2020)

o Addressing Knowledge Gaps: The performance of large pre-trained language
models lags behind task-specific architectures on knowledge-intensive tasks. RAG
addresses this by combining a pre-trained retriever with a pre-trained sequence-to-
sequence model to provide external, up-to-date information.

o« Overcoming Static Knowledge: The world knowledge of pre-trained models is
fixed at the time of their training. RAG allows for updating the knowledge base by
simply replacing the document index, without needing to retrain the entire model.

o Providing Provenance: It is difficult to understand the reasoning behind the
decisions of large language models. RAG offers a degree of interpretability by
showing which retrieved documents were used to generate a response.

« Reducing Hallucinations: Large language models may generate text that is
factually incorrect, a phenomenon known as "hallucination”. By grounding the
generation process in retrieved documents, RAG can produce more factual and
specific language.
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Source: “RAG Decomposition”, an open source project provided by LangChain

Query Translation Methods

Ambiguous queries lead to poor document retrieval, causing LLMs to hallucinate
answers based on irrelevant information. Therefore, the goal for this step is to transfer
the user query to improve retrievals.

To address this issue Rackauckas (2024) proposed RAG-Fusion. The idea is to first
generate multiple queries from the user query using LLM, conduct parallel retrieval,
and then start reciprocal rank fusion (RRF) that is to select documents that
consistently appear in the top results across multiple queries.
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Source: RAG-Fusion: A New Take on Retrieval-Augmented Generation. (Rackauckas,
Z.2024)

Alternatively, the query decomposition method was proposed by Google. It
decompose problem into sub-problems and solve them sequentially.

Stage 1: Decompose Question into Subquestions
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Stage 2: Sequentially Solve Subquestions
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Source: Least-to-Most Prompting Enables Complex Reasoning in Large Language
Models. (Zhou et al., 2022)

Subquestion 2 —

Indexing Method

The goal for indexing is to transform external documents to retrievers which is
responsible for fetching the most relevant pieces of data given a user query. In simple
words, it uses embedding to transform both the user query and documents to vectors
and then use method like KNN to select the ones that are close to the query.

However, one issue occurs which is what if the number of required retrievals exceed
the number of K specified in the simple KNN model? Sarthi (2024) proposed the idea
of Recursive Abstractive Processing for Tree-Organized Retrieval (PATOR).

The tree is constructed by first clustering the raw documents (leaf layer) and generate
summaries for each cluster using LLM. This process is conducted recursively until a
certain pre-defined depth or a single cluster is reached.
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There are two retrieval mechanisms: A. Tree traversal starts at the root level of the
tree and retrieves the top-k (here, top-1) node(s) based on cosine similarity to the
guery vector.

B. Collapsed tree collapses the tree into a single layer and retrieves nodes until a
threshold number of tokens is reached. The benefit of this is both the detailed
documents and high-level summaries are indexed together. This means if a higher-
level question is asked, it will retrieve more higher level of layers, and vice versa.
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B. Collapsed Tree Retrieval
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Source: RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval.
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