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• Deep energy-based neural networks can effectively approximate solutions to
elasticity problems without labeled supervision

• Embedding physical laws into the loss function yields robust generalization and
physically consistent predictions

• The custom KAN architecture is a compact and efficient alternative to conventional
dense networks

• Sampling strategy and integration scheme significantly impact accuracy and
convergence

Quantitative SummarySimulating structural deformation is fundamental to many engineering applications.
While traditional methods such as the Finite Element Method (FEM) are well-
established, they can be computationally intensive and inflexible in real-time or data-
scarce scenarios.

This work presents a mesh-free, physics-informed neural approach to 2D elasticity,
using a Deep Energy Method (DEM) that embeds physical principles—such as strain
energy, force balance, and boundary constraints—directly into the loss function of a
neural network. The goal is to learn the displacement field 𝑢 𝑥, 𝑦 = 𝑢௫ , 𝑢௬ across
the domain by minimizing total potential energy, without requiring labeled data.

We explore various loss combinations, sampling strategies, numerical integration
schemes, and compare classical dense networks with a more efficient Kolmogorov–
Arnold Network (KAN) implementation.

Problem Definition

• A 2D elastic beam under uniaxial traction

• Boundary conditions:

• left edge fixed (Dirichlet)

• right edge loaded (Neumann)

• Assumptions: Plane stress, Hookean or Neo-Hookean material law

• Objective: Approximate displacement

Outlook

DescriptionNetwork

Fully-connected with Tanh or custom activationsFCNN

Sparse functional representation with trainable basis functions 
(custom-built, efficient)

KAN

Training StabilityRel.𝑳𝟐- ErrorLoss TypeSamplingModel

Oscillatory~6.5%Type 011UniformFCNN

Stable~3.2%Type 111Type 2FCNN

Fast convergence~2.7%Type 011Type 2KAN

Highlights

• KAN achieves superior accuracy with fewer parameters and faster training

• Models using strain + divergence + boundary losses outperform simpler
configurations

• Sampling near boundaries improves accuracy without increasing training time

• Simpson's integration provides smoother convergence than trapezoidal rule

 Material complexity: Extend to Neo-Hookean models with large deformations

 Higher-dimensional cases: 3D geometries and anisotropic materials

 Stress-based loss: Explore mixed deep energy methods (mDEM) to predict stress
tensors directly

 Engineering deployment: Use in digital twins and lightweight embedded
simulators

 Benchmarking: Compare performance with commercial FEM tools (e.g. Abaqus)
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Model Architectures

Learning Objective

The neural network 𝑢ఏ = 𝑢௫ , 𝑢௬  is trained to minimize a physics-based energy
functional:

Numerical Enhancements

• Integration: Simpson’s rule over regular mesh

• Sampling:

• Uniform grid

• Adaptive near-boundary grid (Type 2, Type 3)

• Force scheduling: Gradual load increase to enhance
training stability


