

Bridging Physics and Learning: A Hybrid Deep Model for Structural Deformation Prediction

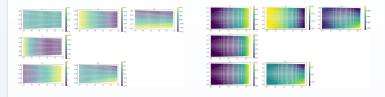
Yahuan Shi TU Berlin

INTRODUCTION

Simulating structural deformation is fundamental to many engineering applications. While traditional methods such as the **Finite Element Method (FEM)** are well-established, they can be computationally intensive and inflexible in real-time or data-scarce scenarios.

This work presents a mesh-free, physics-informed neural approach to 2D elasticity, using a **Deep Energy Method (DEM)** that embeds physical principles—such as strain energy, force balance, and boundary constraints—directly into the loss function of a neural network. The goal is to learn the displacement field $u(x,y) = (u_x,u_y)$ across the domain by minimizing total potential energy, **without requiring labeled data**.

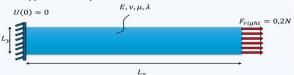
We explore various loss combinations, sampling strategies, numerical integration schemes, and compare classical dense networks with a more efficient **Kolmogorov–Arnold Network (KAN)** implementation.



APPROACHES

Problem Definition

- A 2D elastic beam under uniaxial traction
- Boundary conditions:
- · left edge fixed (Dirichlet)
- right edge loaded (Neumann)
- · Assumptions: Plane stress, Hookean or Neo-Hookean material law
- Objective: Approximate displacement



Learning Objective

The neural network $u_{\theta} = (u_x, u_y)$ is trained to minimize a physics-based energy functional:

$$\mathcal{L}_{\text{total}} = \underbrace{\mathcal{L}_{\text{strain}}}_{\text{internal energy}} + \underbrace{\mathcal{L}_{\text{traction}}}_{\text{external load}} + \underbrace{\mathcal{L}_{\text{div}}}_{\text{force balance}} + \underbrace{\mathcal{L}_{\text{bc}}}_{\text{Dirichlet constraints}}$$

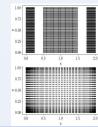
Model Architectures

Network	Description		
FCNN	Fully-connected with Tanh or custom activations		
KAN	Sparse functional representation with trainable basis functions (custom-built, efficient)		



Numerical Enhancements

- · Integration: Simpson's rule over regular mesh
- Sampling:
 - Uniform grid
 - Adaptive near-boundary grid (Type 2, Type 3)
- Force scheduling: Gradual load increase to enhance training stability



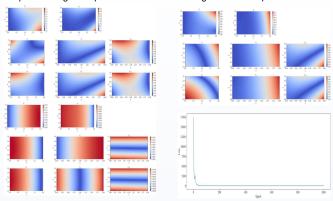
RESULTS

Quantitative Summary

Model	Sampling	Loss Type	Rel.L ² - Error	Training Stability
FCNN	Uniform	Type 011	~6.5%	Oscillatory
FCNN	Type 2	Type 111	~3.2%	Stable
KAN	Type 2	Type 011	~2.7%	Fast convergence

Highlights

- KAN achieves superior accuracy with fewer parameters and faster training
- Models using strain + divergence + boundary losses outperform simpler configurations
- Sampling near boundaries improves accuracy without increasing training time
- · Simpson's integration provides smoother convergence than trapezoidal rule



CONCLUSIONS

- Deep energy-based neural networks can effectively approximate solutions to elasticity problems without labeled supervision
- Embedding physical laws into the loss function yields robust generalization and physically consistent predictions
- The custom KAN architecture is a compact and efficient alternative to conventional dense networks
- Sampling strategy and integration scheme significantly impact accuracy and convergence

Outlook

- ☐ Material complexity: Extend to Neo-Hookean models with large deformations
- ☐ Higher-dimensional cases: 3D geometries and anisotropic materials
- □ Stress-based loss: Explore mixed deep energy methods (mDEM) to predict stress tensors directly
- ☐ Engineering deployment: Use in digital twins and lightweight embedded simulators
- ☐ Benchmarking: Compare performance with commercial FEM tools (e.g. Abaqus)

REFERENCES

Nguyen-Thanh, V. M., Zhuang, X., & Rabczuk, T. (2020). A Deep Energy Method for Finite Deformation Hyperelasticity. European Journal of Mechanics - A/Solids, 80, 103874. https://doi.org/10.1016/j.euromechsol.2019.103874

SciPy Documentation – scipy.integrate.simpson. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html

Liu, Z. et al. (2024). Kolmogorov–Arnold Networks. arXiv preprint. https://arxiv.org/abs/2404.19756

Medusa Framework – Solid Mechanics Wiki, Institute Jožef Stefan https://e6.ijs.si/medusa/wiki/index.php/Solid_Mechanics

Generalized Hooke's Law Demo – Jönköping University. https://jth-computation.hj.se/GeneralizedHookesLaw/

ACKNOWLEDGMENTS AND CONTACT

This work was conducted as part of the TU Berlin "Machine Learning in Computational Mechanics" curriculum. The core methodology is grounded in continuum mechanics and variational principles.

Yahuan Shi

yahuan.shi@gmail.com