Overview of Reinforcement learning

Al 2025 How machines learn by trial, error, and rewards

SUMMER SCHOOL

ai.uni-jena.de Uday Kaipa - Technische Universitat imenau

Introduction and Comparison of Supervised vs RL RL Taxonomy

Reinforcement learning (RL) is a branch of machine learning where an agent learns
what to do (i.e., which actions to take) by interacting with the environment to maximize
a numerical reward signal. Rewards are often sparse. Hence, agents explore randomly
until they find a path that produces a reward, and then continue to explore for other
paths that may yield a higher reward. Over time, it balances exploration (trying new
things) with exploitation (using what it knows works).

Taxonomy of RL Algorithms

learns from experience only

[ENVIRONMENT]

Fig 1. Reinforced behavior in dogs

Machine learning

Action

learns action values
Ex: Q-learning

learns strategy directly
Policy Gradient

Low computation cost,
needs lots of samples.

learns by interacting

L ——

builds environment model,
plans ahead

High computation cost,
needs fewer samples.

with environment
Ex: SARSA, PPO

learns from stored

data
Q-learning, DQN

® C e b /\ combines value & policy
L JCLE . e = P based
b 200) Agent nvironment A3C
o’ : . clear startfend
finite set Ex: chess, games
€ Coward most stat Ex: move up, down , left, right
eward, next state
& > >
ongoing tasks

Fig 2. Machine learning categories

infinite range of actions
steering angle | throttle

pole balancing

Supervised Learning Reinforcement Learning

Fig 5. RL taxonomy

Data with labels (input-output pairs) Interaction with environment, no labeled data

Learns mapping from data to labels Learns policy for decision making over time

Applications

Passive learning (fixed dataset) Active learning (agent explores environment)

Success Stories of RL

Immediate feedback (loss per example) Sparse, delayed rewards affect future states

1. Game-playing

No notion of sequential decisions Decisions affect future states and rewards

AlphaGo / AlphaZero — beating world champions in Go,

Continuous optimization via gradient Shogi & Chess|[3]

Balances exploration vs exploitation (tunable
h t
yperparameter) Atari Game Playing Agents — Deep Q-Networks (DQN)

Understanding Reinforcement Learning learned to play classic Atari games (like Breakout, Pong)

Action directly from pixels, achieving superhuman performance.

1. The Loop (core idea)

Agent — Environment

N

Environment

ﬁ

Robotics Control

Humanoid & Robo dogs

- Agent observes the state of the environment . < \ J
: - 7,

- Age.nt choose§ an action T

- Environment gives a reward and a new state

- Agent updates its policy to do better in the future

MuJoCo humanoids

OpenAl’s Rubik’s Cube hand [4]

Fig 7. Humanoid [2]

Fig 3. RL training loop [1] 3. Autonomous systems

Self-driving cars — Tesla, \Waymo.
Drones — delivery path planning, aerial inspection.

2. Key Concepts

- State (S) : What's going on now (e.g., chessboard position, robot’s location)
- Action (A) : What the agent can do next (e.g., move piece, step forward) 4. Recommendation systems
- Reward (R) : Feedback signal (good/bad) from the environment
- Policy () : The agent’s decision-making strategy

3. The Goal

Netflix, YouTube, and Spotify use RL to personalize content
ChatGPT — RLHF (Reinforcement Learning from

.. . . . Human Feedback)
Maximize total future reward — not just immediate reward.

4. Why It Works Challenges and future

The agent learns by trial and error using rewards as guidance and stores the
learning in form of Policy (o), improving over time without needing correct answers
beforehand.

Why it’s still hard and exciting:

e Requires lots of data and computing power
e Hard to design good reward signals
e Balancing exploration vs. exploitation is tricky

5. Algorithms

e The agent uses a Q-table (state-action) to decide which action is best in each state.

e It looks up the values for all possible actions and chooses the one with the highest Where it’s heading:

Q-value. e Combining RL with other Al methods
e As the agent explores and learns, it updates the table, gradually improving its e More sample-efficient and safer learning
. . . Fig 8. Multi-agent co-operation; Hide and seek -
choices for each situation. e Multi-agent co-operation, feudal networks. Ai-generated [1]

State-Action Values References

U p Down Laft 1. Ihr:[ag.e generated b){ Pe.rplexity Al. (2025). “RL Training Loop, State-action value table, Hide and seek MARL.” Retrieved August 15, 2025, from
ps://www.perplexity.ai
2. "L'exposition MATCH. Design & Sport (Musée du Luxembourg, Paris)" by dalbera is licensed under CC BY 2.0.
3. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... Silver, D. (2020). Mastering Atari, Go, chess and shogi by
planning with a learned model. arXiv:1911.08265. Retrieved from https://arxiv.org/abs/1911.08265
4. OpenAl, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., ... Zhang, L. (2019). Solving Rubik’s Cube with a Robot Hand.
arXiv:1910.07113. Retrieved from arXiv:1910.07113

Contact and license

Contact :

Uday Kaipa, Uday.kaipa@icloud.com, Technische Universitat liImenau

License:

All images and content on this poster by Uday kaipa are licensed under CC-BY 4.0. You are free to share and adapt, provided you give proper attribution.

Fig 4. Q-Value updation [1]

https://www.google.com/url?q=https://www.perplexity.ai/&sa=D&source=editors&ust=1755296286473774&usg=AOvVaw3jsSs3zevvGS-UO20idAmK
https://www.google.com/url?q=https://arxiv.org/abs/1911.08265&sa=D&source=editors&ust=1755296286474045&usg=AOvVaw35ksIINP84P2mpS_4GmkN3
mailto:Uday.kaipa@icloud.com

