
Automatic Differentiation in AI
Why Julia & Enzyme?

Salim Alkhaddoor
Friedrich Schiller University Jena

Motivation
▶ Gradients power modern optimization (SGD, quasi-Newton) in ML and scientific computing.
▶ Three ways to get derivatives:

▶ Numerical (finite differences): trivial to implement but needs O(d) function calls for d inputs; sensitive to step size;
truncation & roundoff errors accumulate [1, 2].

▶ Symbolic: algebraically exact but brittle on real programs (control flow, mutability) and risks expression swell [3, 1].
▶ Automatic Differentiation (AD): applies the chain rule to the executed program; derivatives are accurate to machine

precision with cost within a small constant of the primal evaluation [2, 1].

▶ Rule of thumb reverse-mode for scalar losses with many inputs; forward-mode when
outputs dominate; mix modes when dimensions are comparable [2].

Fundamentals of AD
▶ Program-level chain rule without forming Jacobians explicitly. For y = f (x):

JVP: Jf(x) v (forward mode), VJP: Jf(x)⊤w (reverse mode)[2, 1].
▶ Forward mode (dual numbers): one sweep per seed v; overhead scales with #inputs;

integrates naturally with control flow via overloaded primitives [1].
▶ Reverse mode (adjoints/tape): for a scalar loss, only a single backward sweep is needed;

for an m-dimensional output, m sweeps are required (or batched vector–Jacobian
products). Overhead therefore scales with the number of outputs; it requires saving or
recomputing intermediates, and checkpointing trades memory for time [4, 2].

▶ Mixed & higher-order compose JVPs and VJPs for Hessian-vector and Jacobian-vector
products at near-primal cost [5].

Figure: FIG. 1. (a) Forward-mode and (b) reverse-mode automatic differentiation on computational graphs. Black arrows denote the
forward pass from inputs to outputs. Red arrows show the forward chain rule in (a) and adjoint back-propagation in (b).

Julia & Its AD Ecosystem
Why Julia for AD?
▶ LLVM JIT compiles Julia code to optimized native machine code at runtime; inspect with

@code_llvm f(1.0) [6].
▶ Multiple Dispatch selects methods based on argument types for specialization and speed:

f(x:: Int) = x + 1
f(x:: Float64) = 2x

▶ Parametric Types generic, type-safe data structures for reusable algorithms:
struct Pair{T}; x::T; y::T; end [6].

▶ Compiler Introspection direct access to Julia’s AST and IR for metaprogramming.

Core AD Packages
▶ ForwardDiff.jl forward-mode AD via dual numbers. [1, 7].
▶ ReverseDiff.jl reverse-mode AD with runtime tapes. [1, 8].
▶ Zygote.jl source-to-source AD on Julia IR. [9].
▶ ChainRulesCore.jl infrastructure for defining custom forward/reverse rules. [10].
▶ Enzyme.jl AD as an LLVM IR pass (forward and reverse). [11].

AD Implementation Paradigms
▶ Operator Overloading (Dual Numbers) seamlessly overload arithmetic to carry

derivatives; trivial in Julia but can allocate memory per operation—mitigated by pooling or
static arrays [1].

▶ Source/IR Transformation perform AD at compile time by rewriting AST or LLVM IR;
Zygote (SSA-based) inlines and optimizes gradients [9], while Enzyme integrates as an
LLVM pass for deep optimization [11].

▶ Tape-Based (Wengert Lists) record ops at runtime, then run a backward sweep.
Handles dynamic control flow; large tapes require checkpointing to save memory [12] [4].

▶ Custom Gradients & Hybrid Modes define bespoke derivative rules with
ChainRulesCore.jl for non-standard code paths [10]; combine forward and reverse sweeps for
efficient Jacobian-/Hessian–vector products.

▶ Emerging Paradigms incremental AD for streaming data, event-driven AD in reactive
systems, and probabilistic AD via Monte Carlo estimators [13].

Deep Dive: Enzyme
Architecture & Phases
▶ Frontend → IR capture Julia/C/C++/Fortran function as LLVM-IR or MLIR, preserving

control flow and type metadata.
▶ Activity Analysis lightweight pass identifies “active” (differentiable) values and

instructions [11].
▶ Adjoint & Shadow Buffers allocate dual-value buffers for primal and adjoint data,

enabling in-place accumulation.
▶ Gradient Codegen the intrinsic __enzyme_autodiff emits optimized derivative IR for

forward, reverse or mixed modes.
▶ Re-Optimization rerun LLVM passes (inlining, GVNi, loop vectorization) to fuse primal

and adjoint code and remove dead branches.

Advanced Capabilities
▶ Higher-Order Derivatives: nest autodiff calls for Hessian-vector products or full Hessians.
▶ Custom Rules: define low-level derivatives for intrinsics, memory-side effects or GPU kernels.
▶ Mixed-Precision: supports FP16<–>FP32 for performance and numerical stability.
▶ Checkpointing Integration: use runtime checkpoints to trade memory for recomputation.

Example Workflow
using Enzyme

function loss(x)
return sum(tanh .(x).^3) + dot(x, x)

end

1st -order reverse -mode gradient d(loss)/d x at x
x = randn (1000)
dx = zeros(length(x))
Enzyme. autodiff (Enzyme.Reverse , loss , Enzyme. Duplicated (x, dx))
gradient now stored in dx

Hessian -vector product via forward -over - reverse (FoR)
function hvp(x, v)

function g(u)
du = zeros(length(u))
Enzyme. autodiff (Enzyme.Reverse , loss , Enzyme. Duplicated (u, du))
return dot(du , v) # scalar: <grad(loss(u)), v>

end
JVP of g at x in direction v equals H(x)*v
Enzyme. autodiff (Enzyme.Forward , g, Enzyme. Duplicated (x, v))

end

Benchmarks: Enzyme vs. JuliaDiff
Forward function

loss(p) =
100000∑
k=1

5∑
i=1

sin
(
tk pi

)
e− p5+i tk, tk = k, p ∈ R10.

(a) Forward: Time (b) Forward: Memory

Reverse function

loss(x) =
n∑

i=1
tanh

(
xi

)3 + x⊤x =
n∑

i=1

[
tanh

(
xi

)3 + x2
i

]
, x ∈ Rn, n = 50.

(c) Reverse: Time (d) Reverse: Memory

Practical Considerations & Impact
▶ Maximal Performance exploits post-optimization LLVM IR for near-native speed,

minimizing overhead in adjoint generation.
▶ Language-Agnostic operates on LLVM IR, allowing differentiation across many

LLVM-based languages (e.g., C, C++, Fortran, Rust, Julia, Swift) as long as the code is
statically analyzable. Not every language or FFI boundaryii is automatically differentiable.

▶ HPC Scalability designed for large-scale CPU clusters; GPU and distributed-memory
backends under active development [14].

▶ Requirements code must be analyzable at the LLVM IR level; manual annotations may be
needed for side-effects, aliasing, or non-standard memory layouts.

▶ Use Cases PDE solvers, scientific sensitivity analysis, differentiating legacy C/Fortran HPC
codes, batched Jacobian computations for machine learning or UQ.

References
[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic Differentiation in Machine Learning: A Survey,” J. Mach. Learn. Res., vol. 18, no. 153, pp. 1–43, 2018.

[2] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed., SIAM, 2008. doi:10.1137/1.9780898717761.

[3] U. Naumann, The Art of Differentiating Computer Programs, SIAM, 2012. doi:10.1137/1.9781611972078.

[4] A. Griewank and A. Walther, “Algorithm 799: REVOLVE: An Implementation of Checkpointing for the Reverse or Adjoint Mode of Computational Differentiation,” ACM Trans. Math. Softw., vol. 26, no. 1, pp. 19–45, 2000.
doi:10.1145/347837.347846.

[5] B. A. Pearlmutter, “Fast Exact Multiplication by the Hessian,” Neural Computation, vol. 6, no. 1, pp. 147–160, 1994. doi:10.1162/neco.1994.6.1.147.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to Numerical Computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98, 2017. doi:10.1137/141000671.

[7] J. Revels, M. Lubin, et al., “ForwardDiff.jl Documentation,” JuliaDiff, 2021–. Available: https://juliadiff.org/ForwardDiff.jl/stable/

[8] M. Innes, et al., “ReverseDiff.jl,” JuliaDiff, 2021–. Available: https://github.com/JuliaDiff/ReverseDiff.jl

[9] M. Innes, “Don’t Unroll Adjoint: Differentiating SSA-Form Programs,” arXiv:1810.07951, 2018. Available: https://arxiv.org/abs/1810.07951

[10] L. White, J. R. Zammit, F. Hagen, et al., “ChainRulesCore.jl,” JuliaDiff Project Documentation, 2021–. Available: https://juliadiff.org/ChainRulesCore.jl/stable/

[11] W. S. Moses, V. Churavy, L. Hannel, J. Paulo, A. Shafran, and T. Schulthess, “Enzyme: High-Performance Automatic Differentiation for LLVM,” in Advances in Neural Information Processing Systems 33 (NeurIPS), 2020.
Available: https://enzyme.mit.edu

[12] A. Walther and A. Griewank, “Getting Started with ADOL-C,” in Dagstuhl Seminar Proceedings 09061: Automatic Differentiation: Applications, Theory, and Tools, 2009. Available:
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09061.10

[13] S.-X. Zhang, Z.-Q. Wan, and H. Yao, “Automatic differentiable Monte Carlo: Theory and application,” Phys. Rev. Research, vol. 5, 033041, 2023. doi:10.1103/PhysRevResearch.5.033041.

[14] W. S. Moses, J. Hückelheim, L. Hannel, T. Besard, et al., “Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme,” in Proc. SC ’21, ACM, 2021. doi:10.1145/3458817.3476165.

i GVN (Global Value Numbering): LLVM optimization that removes fully or partially redundant computations and redundant loads, improving code generated by AD passes. ii FFI boundary: Interface where code calls into a foreign language/runtime (e.g., ccall from Julia to C/Fortran). Across an FFI boundary, differentiation is not automatic unless custom rules or wrappers are provided.

https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1145/347837.347846
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1137/141000671
https://juliadiff.org/ForwardDiff.jl/stable/
https://github.com/JuliaDiff/ReverseDiff.jl
https://arxiv.org/abs/1810.07951
https://juliadiff.org/ChainRulesCore.jl/stable/
https://enzyme.mit.edu
https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09061.10
https://doi.org/10.1103/PhysRevResearch.5.033041
https://doi.org/10.1145/3458817.3476165

