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Motivation
▶ Gradients power modern optimization (SGD, quasi-Newton) in ML and scientific computing.
▶ Three ways to get derivatives:

▶ Numerical (finite differences): trivial to implement but needs O(d) function calls for d inputs; sensitive to step size;
truncation & roundoff errors accumulate [1, 2].

▶ Symbolic: algebraically exact but brittle on real programs (control flow, mutability) and risks expression swell [3, 1].
▶ Automatic Differentiation (AD): applies the chain rule to the executed program; derivatives are accurate to machine

precision with cost within a small constant of the primal evaluation [2, 1].

▶ Rule of thumb reverse-mode for scalar losses with many inputs; forward-mode when
outputs dominate; mix modes when dimensions are comparable [2].

Fundamentals of AD
▶ Program-level chain rule without forming Jacobians explicitly. For y = f (x):

JVP: Jf(x) v (forward mode), VJP: Jf(x)⊤w (reverse mode)[2, 1].
▶ Forward mode (dual numbers): one sweep per seed v; overhead scales with #inputs;

integrates naturally with control flow via overloaded primitives [1].
▶ Reverse mode (adjoints/tape): for a scalar loss, only a single backward sweep is needed;

for an m-dimensional output, m sweeps are required (or batched vector–Jacobian
products). Overhead therefore scales with the number of outputs; it requires saving or
recomputing intermediates, and checkpointing trades memory for time [4, 2].

▶ Mixed & higher-order compose JVPs and VJPs for Hessian-vector and Jacobian-vector
products at near-primal cost [5].

Figure: FIG. 1. (a) Forward-mode and (b) reverse-mode automatic differentiation on computational graphs. Black arrows denote the
forward pass from inputs to outputs. Red arrows show the forward chain rule in (a) and adjoint back-propagation in (b).

Julia & Its AD Ecosystem
Why Julia for AD?
▶ LLVM JIT compiles Julia code to optimized native machine code at runtime; inspect with

@code_llvm f(1.0) [6].
▶ Multiple Dispatch selects methods based on argument types for specialization and speed:

f(x:: Int) = x + 1
f(x:: Float64 ) = 2x

▶ Parametric Types generic, type-safe data structures for reusable algorithms:
struct Pair{T}; x::T; y::T; end [6].

▶ Compiler Introspection direct access to Julia’s AST and IR for metaprogramming.

Core AD Packages
▶ ForwardDiff.jl forward-mode AD via dual numbers. [1, 7].
▶ ReverseDiff.jl reverse-mode AD with runtime tapes. [1, 8].
▶ Zygote.jl source-to-source AD on Julia IR. [9].
▶ ChainRulesCore.jl infrastructure for defining custom forward/reverse rules. [10].
▶ Enzyme.jl AD as an LLVM IR pass (forward and reverse). [11].

AD Implementation Paradigms
▶ Operator Overloading (Dual Numbers) seamlessly overload arithmetic to carry

derivatives; trivial in Julia but can allocate memory per operation—mitigated by pooling or
static arrays [1].

▶ Source/IR Transformation perform AD at compile time by rewriting AST or LLVM IR;
Zygote (SSA-based) inlines and optimizes gradients [9], while Enzyme integrates as an
LLVM pass for deep optimization [11].

▶ Tape-Based (Wengert Lists) record ops at runtime, then run a backward sweep.
Handles dynamic control flow; large tapes require checkpointing to save memory [12] [4].

▶ Custom Gradients & Hybrid Modes define bespoke derivative rules with
ChainRulesCore.jl for non-standard code paths [10]; combine forward and reverse sweeps for
efficient Jacobian-/Hessian–vector products.

▶ Emerging Paradigms incremental AD for streaming data, event-driven AD in reactive
systems, and probabilistic AD via Monte Carlo estimators [13].

Deep Dive: Enzyme
Architecture & Phases
▶ Frontend → IR capture Julia/C/C++/Fortran function as LLVM-IR or MLIR, preserving

control flow and type metadata.
▶ Activity Analysis lightweight pass identifies “active” (differentiable) values and

instructions [11].
▶ Adjoint & Shadow Buffers allocate dual-value buffers for primal and adjoint data,

enabling in-place accumulation.
▶ Gradient Codegen the intrinsic __enzyme_autodiff emits optimized derivative IR for

forward, reverse or mixed modes.
▶ Re-Optimization rerun LLVM passes (inlining, GVNi, loop vectorization) to fuse primal

and adjoint code and remove dead branches.

Advanced Capabilities
▶ Higher-Order Derivatives: nest autodiff calls for Hessian-vector products or full Hessians.
▶ Custom Rules: define low-level derivatives for intrinsics, memory-side effects or GPU kernels.
▶ Mixed-Precision: supports FP16<–>FP32 for performance and numerical stability.
▶ Checkpointing Integration: use runtime checkpoints to trade memory for recomputation.

Example Workflow
using Enzyme

function loss(x)
return sum(tanh .(x).^3) + dot(x, x)

end

# 1st -order reverse -mode gradient d(loss)/d x at x
x = randn (1000)
dx = zeros(length(x))
Enzyme. autodiff (Enzyme.Reverse , loss , Enzyme. Duplicated (x, dx))
# gradient now stored in dx

# Hessian -vector product via forward -over - reverse (FoR)
function hvp(x, v)

function g(u)
du = zeros(length(u))
Enzyme. autodiff (Enzyme.Reverse , loss , Enzyme. Duplicated (u, du))
return dot(du , v) # scalar: <grad(loss(u)), v>

end
# JVP of g at x in direction v equals H(x)*v
Enzyme. autodiff (Enzyme.Forward , g, Enzyme. Duplicated (x, v))

end

Benchmarks: Enzyme vs. JuliaDiff
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Practical Considerations & Impact
▶ Maximal Performance exploits post-optimization LLVM IR for near-native speed,

minimizing overhead in adjoint generation.
▶ Language-Agnostic operates on LLVM IR, allowing differentiation across many

LLVM-based languages (e.g., C, C++, Fortran, Rust, Julia, Swift) as long as the code is
statically analyzable. Not every language or FFI boundaryii is automatically differentiable.

▶ HPC Scalability designed for large-scale CPU clusters; GPU and distributed-memory
backends under active development [14].

▶ Requirements code must be analyzable at the LLVM IR level; manual annotations may be
needed for side-effects, aliasing, or non-standard memory layouts.

▶ Use Cases PDE solvers, scientific sensitivity analysis, differentiating legacy C/Fortran HPC
codes, batched Jacobian computations for machine learning or UQ.
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