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Test where you deploy: pair clean accuracy with OOD metrics (e.g., mCE; WILDS). [1, 6]
Reduce shortcuts: use data/augmentations and inductive biases that make spurious cues
less useful; validate under shift, not only in-domain. [3]
Report stability: multiple seeds, dispersion, and ablations on data/training choices; treat
stability as a first-class result. [4]
Capacity with context: interpret gains through the double-descent lens and OOD results
— not only held-out accuracy. [2]

Entire pipelines can be underspecified: many predictors tie on validation
accuracy yet behave differently on OOD data or subgroups due to seeds,
initializations, or small design choices. This is not classical overfitting; it’s an
instability that standard splits don’t reveal.
Evaluate families of models (multiple seeds/inits; slight architectural or data-
processing variants) and report dispersion (mean ± std, or full distributions).
Avoid conclusions from a single lucky run. [4]

Three-step recipe:
1. Fix data and training recipe; 

vary only seeds/inits (≥5 recommended).
2. For each trained model, 

record validation and OOD metrics.
3. Plot dispersion/correlation and
discuss divergence even at 
similar validation accuracy. [4]

Diagnostics you can run:
(i) Compare training/test dynamics on true vs. permuted labels;
(ii) Visualize feature use (saliency/counterfactuals) to detect background or

texture reliance. [3, 5]

Shift Happens: Evaluating Under Distribution Shift (OOD)

Concept vs. Correlation: What We Mean by Generalization

Generalization is a model‘s performance on unseen data drawn from the
intended target distribution. In modern, overparameterized regimes, model fit
no longer maps cleanly to reliability: test risk — the expected loss on unseen
target data — can follow a double-descent curve (falling, rising near
interpolation, then falling again). Held-out accuracy alone does not certify
robustness under shift. [2]

How Models Cheat: Memorization & Shortcuts

Held-out accuracy ≠ reliability. Add OOD tests that mirror deployment variation.

Deep nets can perfectly fit random labels and even noisy images —
capacity enables memorization without concept learning. In practice, models
often exploit shortcuts (textures, backgrounds, data-collection artifacts): non-
causal features that inflate in-domain scores yet fail under mild shifts.
IID = independent and identically distributed evaluation; OOD = out-of-
distribution evaluation used to measure robustness. [3, 5]

A simple example of shortcut
learning is shown in Figure 4.
The model appears accurate in
IID validation; however, OOD
tests reveal that it prioritizes
position over shape, leading to
systematic mislabeling.

Fig. 4: Toy Shortcut Example [3]

B. Real-world shifts (WILDS).

Choose datasets whose shifts match your
domain (hospital, camera, geography,
time).
Report the dataset-specific in-domain vs.
OOD metrics using the official protocol.
[6]

Tutorial steps:
1. Train and evaluate on the in-domain split.
2. Evaluate on OOD split(s). 
3. Present the gap and discuss failure modes

(e.g., subgroup, time drift). [6]

A. Corruptions & perturbations
(ImageNet-C/P).

Standardized corruptions (weather/noise/
blur, etc.) and small perturbations
quantify stability.
Report: mCE (mean corruption error;
lower is better) and flip/consistency rates.
These stress tests reveal brittleness that
clean accuracy can hide. [1]

Tutorial steps:
1. Run your baseline on ImageNet-C and

compute mCE (per [1]);
2. Run ImageNet-P to measure stability under tiny

input changes. 
3. Compare both to clean accuracy and report them

together. [1]

Tab. 1: IID → OOD drops across diverse domains — real-world shift consistently degrades performance. [6]

Fig. 5: ImageNet-C Corruption Families
(Noise, Blur, Weather, Digital) [1]

Figure 5 makes robustness tangible by showing some of the ImageNet-C corruption
families (noise, blur, weather, digital), while Figure 6 distills the same
idea quantitatively into mCE bar charts (lower is better), separating models that truly
withstand disturbances from those that only shine on clean inputs. Together with the
WILDS Table 1 — real domains (hospitals, seasons, product categories, time) — this
builds a coherent bridge from controlled stressors to real-world shifts — yielding a
unified picture of robustness and deployment-time generalization. [1, 6]

Fig. 6: Corruption robustness: mCE bars across architectures
(lower is better). [1]

Fig. 1: Test risk vs. model capacity — classic U-curve and double-descent (fit can decouple from reliability). [2]

Fig. 2: Learning curves for true vs. permuted labels —
train error → 0 while test error increases with label

corruption (memorization exposed). [5]

Fig. 3: Taxonomy of decision rules: all rules → training
solutions → IID solutions; shortcuts contrasted with

the intended (causal) rule. [3]

Fig. 7: Scatter of Eval
(non-British) vs. (British) — similar IID 
scores, but divergent OOD behavior

(low correlation). [4]
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