

You Only Look Once: Real-Time Object Detection with Neural Networks

Jamie Klöser

Faculty of Mathematics and Computer Sciences
Friedrich Schiller University Jena

Why Real-Time Detection? The Promise of Looking Once

Goal: detect and localize multiple objects in real time on consumer hardware. [4]

Why YOLO? Single-shot detector: predicts bounding boxes & classes in one forward pass, enabling high FPS. [3]

Poster contributions: crisp intuition of YOLO's pipeline; **mini-benchmark** of FPS vs. input resolution; wins & fails of YOLO

Applications: assistive robotics, AR, safety monitoring, logistics.

person, sheep, dog

(a) Image classification

(c) Semantic segmentation

Semantic segmentation (d) This work

Fig. 2 Examples from MS COCO illustrating objects in context. Reproduced from
Lin et al., 2014, Fig. 1. [4]

How YOLO Sees: From Pixels to Predictions

The One-Pass Recipe: Backbone → Neck → Head

Backbone: convolutional feature extractor (downsampling; rich feature maps). [4]

Neck: multi-scale feature fusion (e.g., FPN/PAN-like) to detect small & large objects. [6]

Head: direct box regression + objectness + class scores per grid cell/anchor (anchor-free variants exist). [4]

Post-processing: NMS

(Non-Maximum Suppression) removes duplicate boxes. [4]

Fig. 3 — YOLOv4 Pipeline: Single-pass detector, Backbone–Neck–Head with NMS. Reproduced from Bochkovskiy, Wang & Liao, 2020, Fig. 2.

What the Network Optimizes: A Three-Part Loss

Box loss: distance between predicted and target boxes (IoU-family).

Objectness: is there an object?

Class: category probability. [8, 9]

Speed vs. Detail: The Resolution Trade-Off

Question: How does **input resolution** affect **speed** (FPS) and qualitative detection quality?

Models: YOLOv3/YOLOv4 families (single-shot detectors).

Resolutions: 320–640 px (square).

Observation: Higher input sizes generally increase AP (accuracy) but reduce FPS. For example:

YOLOv3 reports 22 ms at 320×320 (~45 FPS) on Titan X (28.2 mAP); YOLOv4 reports ~65 FPS on Tesla V100 with higher AP than YOLOv3. Vendor docs also note trades accuracy vs. speed during inference. [3]

Fig. 6 — YOLOv4 Speed–Accuracy

Speed–accuracy trade-off on COCO (real-time region highlighted). Reproduced from

Bochkovskiy, Wang & Liao, 2020, Fig. 1.

What Others Observed: Reported FPS at Common Sizes

Speed trend (YOLOv4 example): ~54 FPS @416, ~43 FPS @512, ~33 FPS @608 on Pascal/Volta-class GPUs; accuracy (AP) increases with input size. Hardware-dependent.

Qualitative trend: higher resolution \rightarrow better small-object detection; lower resolution \rightarrow higher FPS.

Stability: lighting and motion blur impact detection consistency. [4, 10]

Model	#Param.	FLOPs	Size	FPS (V100)
YOLOv7-tiny- SiLU	6.2M	13.8G	640	273
YOLOv7	36.9M	104.7G	640	118
YOLOX-S	9.0M	26.8G	640	102
YOLOv7-W6	70.4M	360.0G	1280	80
YOLOv7-E6	97.2M	515.2G	1280	54
Table 1. Excerpt from YOLOv7, Table 9 on V100. Columns shown: Model, #Params, FLOPs, Input Size, FPS (V100). Results are hardware-dependent. Reproduced from Wang et al., CVPR 2023, Table 9.				

Making It Work: Practical Choices & Trade-Offs

Trade-off: Throughput vs. detail. Choose resolution based on task needs (e.g., tiny objects require ≥480/640).

Bottlenecks: pre/post-processing and NMS can dominate at high FPS; CPU-only runs are NMS-limited.

Generalization: pretrained weights perform well on common objects; domain shift (lighting, unusual classes) can degrade results.

Practical tips: fix exposure, avoid motion blur, and pin confidence/IoU thresholds for fair comparisons. [8, 9, 13]

Mind the Gaps: Limits Today, Easy Wins Tomorrow

Mind the Gaps: Limits Today, Easy Wins Tomorrow

Small/far objects remain hard at low input sizes.

Calibration: confidence ≠ probability; be cautious interpreting scores.

Future work: lightweight tracking (SORT/DeepSORT), model quantization/pruning for CPU speedups, and tiny finetune on a custom 3-5-class desk dataset. [2, 11, 14]

Where YOLO Wins & Fails: Successes, Failure Modes, Quick Fixes

Quick fixes (no retraining):

Input size \uparrow (e.g., 480 \rightarrow 640) for small objects (accept lower FPS).

Thresholds: tune confidence & IoU; try Soft-NMS/DIoU-NMS.

Temporal smoothing: lightweight tracking (SORT/DeepSORT) to stabilize boxes.

Pre-processing: fix exposure/ISO; denoise or deblur lightly.

Mini-finetune: a few classes from your domain.

Works great when... large/near objects, clear contrast, moderate motion.

Struggles when... small/far objects, heavy occlusion, **low light/over-exposure**, motion blur, unusual viewpoints, cluttered scenes.

Why: fewer pixels per object, aliasing, weak features, NMS suppressing true boxes in crowds.

[4, 8, 9, 10, 14]

Comparison with other real-time object detectors. Reprod from Wang, Bochkovskiy & Liao, 2023, Fig. 1.

References

- [1] M. Cordts et al., "The Cityscapes Dataset for Semantic Urban Scene Understanding," CVPR, 2016. (incl. examples
- [2] T.-Y. Lin, M. Maire, S. Belongie, *et al.*, "Microsoft COCO: Common Objects in Context," **ECCV**, 2014.
- [3] J. Redmon, A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv:1804.02767, 2018.
- [4] A. Bochkovskiy, C.-Y. Wang, H.-Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv:2004.10934, 2020.
- [5] C.-Y. Wang, A. Bochkovskiy, H.-Y. M. Liao, "Scaled-YOLOv4: Scaling Cross-Stage-Partial Network," arXiv:2011.08036, 2020/2021.
- [6] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, "Feature Pyramid Networks for Object Detection,"
- [7] H. Rezatofighi *et al.*, "Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression," **CVPR**, 2019.
- DIoU-NMS)
 [9] N. Bodla, B. Singh, R. Chellappa, L. S. Davis, "Soft-NMS Improving Object Detection With One Line of Code,"

[8] Z. Zheng et al., "Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression," AAAI, 2020. (incl.

- ICCV, 2017.
- [10] C.-Y. Wang, A. Bochkovskiy, H.-Y. M. Liao, "YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors," **CVPR**, 2023.
- [11] B. Singh, L. S. Davis, "An Analysis of Scale Invariance in Object Detection (SNIP)," **CVPR**, 2018.
- [12] J. Huang et al., "Speed/Accuracy Trade-Offs for Modern Object Detectors," CVPR, 2017.[13] Ultralytics Documentation, Inference settings & imgsz accuracy—speed trade-off, accessed 2025.

[14] S. Hwang et al., "Multispectral Pedestrian Detection Benchmark," CVPR, 2015. (KAIST)

Contact

Jamie Klöser

Friedrich Schiller University Jena, Faculty of Mathematics and Computer Sciences
Email: jamie.kloeser@uni-jena.de

Matrix: @jamiekloeser:matrix.org