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Why Real-Time Detection? The Promise of Looking Once

How YOLO Sees: From Pixels to Predictions

Making It Work: Practical Choices & Trade-Offs

Where YOLO Wins & Fails: Successes, Failure Modes, Quick Fixes

Works great when… large/near objects, clear
contrast, moderate motion.

Struggles when… small/far objects, heavy 
occlusion, low light/over-exposure, motion blur, 
unusual viewpoints, cluttered scenes.
Why: fewer pixels per object, aliasing, weak
features, NMS suppressing true boxes in crowds.

[4, 8, 9, 10, 14]

Trade-off: Throughput vs. detail. Choose resolution based on task needs (e.g., 
tiny objects require ≥480/640).

Bottlenecks: pre/post-processing and NMS can dominate at high FPS; CPU-only
runs are NMS-limited.

Generalization: pretrained weights perform well on common objects; domain shift 
(lighting, unusual classes) can degrade results.

Practical tips: fix exposure, avoid motion blur, and pin confidence/IoU thresholds
for fair comparisons. [8, 9, 13]

Goal: detect and localize multiple objects in real time on consumer hardware. [4]

Why YOLO? Single-shot detector: predicts bounding boxes & classes in one
forward pass, enabling high FPS. [3]

Poster contributions: crisp intuition of YOLO’s pipeline; mini-benchmark of FPS
vs. input resolution; wins & fails of YOLO

Applications: assistive robotics, AR, safety monitoring, logistics.

Small/far objects remain hard at low
input sizes.

Calibration: confidence ≠ probability; be
cautious interpreting scores.

Future work: lightweight tracking
(SORT/DeepSORT), model quantization/
pruning for CPU speedups, and tiny
finetune on a custom 3-5-class desk
dataset. [2, 11, 14]

Speed trend (YOLOv4 example): ~54 FPS @416, ~43 FPS @512, ~33 FPS @608
on Pascal/Volta-class GPUs; accuracy (AP) increases with input size.
Hardware-dependent.
Qualitative trend: higher resolution → better small-object detection; lower
resolution → higher FPS.
Stability: lighting and motion blur impact detection consistency. [4, 10]

Mind the Gaps: Limits Today, Easy Wins TomorrowThe One-Pass Recipe: Backbone → Neck → Head
Backbone: convolutional feature extractor (downsampling; rich feature maps). [4]

Neck: multi-scale feature fusion (e.g., FPN/PAN-like) to detect small & large objects. 
[6]

What the Network Optimizes: A Three-Part Loss

Box loss: distance between predicted and target
boxes (IoU-family).

Objectness: is there an object?

Class: category probability. [8, 9]

Model #Param. FLOPs Size FPS (V100)
YOLOv7-tiny-
SiLU

6.2M 13.8G 640 273 

YOLOv7 36.9M 104.7G 640 118 
YOLOX-S 9.0M 26.8G 640 102
YOLOv7-W6 70.4M 360.0G 1280 80
YOLOv7-E6 97.2M 515.2G 1280 54 

Speed vs. Detail: The Resolution Trade-Off
Question: How does input resolution affect speed (FPS) and qualitative detection
quality?

Models: YOLOv3/YOLOv4 families (single-shot detectors). 

Resolutions: 320–640 px (square).

Observation: Higher input sizes
generally increase AP (accuracy) 
but reduce FPS. For example:

YOLOv3 reports 22 ms at 320×320 
(~45 FPS) on Titan X (28.2 mAP); 
YOLOv4 reports ~65 FPS on Tesla 
V100 with higher AP than YOLOv3. 
Vendor docs also note trades
accuracy vs. speed during
inference. [3]

Quick fixes (no retraining):

Input size ↑ (e.g., 480 → 640) for small objects (accept lower FPS).

Thresholds: tune confidence & IoU; try Soft-NMS/DIoU-NMS.

Temporal smoothing: lightweight tracking (SORT/DeepSORT) to stabilize boxes.

Pre-processing: fix exposure/ISO; denoise or deblur lightly.

Mini-finetune: a few classes from your domain.

Head: direct box regression + 
objectness +  class scores per grid
cell/anchor (anchor-free variants
exist). [4]

Post-processing: NMS
(Non-Maximum Suppression) 
removes duplicate boxes. [4]

What Others Observed: Reported FPS at Common Sizes

Fig. 3 — YOLOv4 Pipeline: Single-pass detector, Backbone–Neck–Head with NMS. Reproduced from
Bochkovskiy, Wang & Liao, 2020, Fig. 2.

Fig. 4 & 5. —
GIoU (IoU vs. 
GIoU
Geometrie)
Bounding-box 
geometry: IoU
vs. GIoU. 
Reproduced
from
Rezatofighi et 
al., 2019, Fig. 1.

Fig. 6 — YOLOv4 Speed–Accuracy
Speed–accuracy trade-off on COCO (real-time region highlighted). Reproduced from

Bochkovskiy, Wang & Liao, 2020, Fig. 1.

Fig. 9 — SNIP (kleine Objekte / Scale-Mismatch)
Distribution of RoI scales showing prevalence of tiny objects. Reproduced from Singh & 

Davis, 2018, Fig. 1.

Fig. 7 — Soft-NMS (Intuition/Illustration) Greedy NMS can suppress true positives in crowds; Soft-NMS 
mitigates this. Reproduced from Bodla et al., 2017, Fig. 1.

Fig. 8 — Soft-NMS (Pseudocode / Vergleich)
Soft-NMS algorithm vs. Greedy NMS. Reproduced from Bodla et al., 2017, Fig. 3.

Fig. 10 — YOLOv7 (Real-time Detectors Comparison)
Comparison with other real-time object detectors. Reproduced

from Wang, Bochkovskiy & Liao, 2023, Fig. 1.

Fig. 1 — Cityscapes (Hero / Urban Szene): Urban street scene with instance
annotations. Reproduced from Cordts et al., 2016, Cityscapes examples page / Fig. 1 

teaser. [1]
Fig. 2 Examples from MS COCO illustrating objects in context. Reproduced from

Lin et al., 2014, Fig. 1. [4]
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Table 1. Excerpt from YOLOv7, Table 9 on V100. Columns shown: Model, #Params, FLOPs, Input Size, FPS 

(V100). Results are hardware-dependent. Reproduced from Wang et al., CVPR 2023, Table 9.


